SLS SWING: Olaf Diegel Reveals First Prototype of 3D-Printed Alto Saxophone
Posted: August 27, 2014 Filed under: Art & Culture, Mediasphere, Science & Technology | Tags: 3D print, 3D Systems, Frankfurt, Lund University, New Zealand, Olaf Diegel, Saxophone, Selective laser sintering, Sweden Leave a comment“It really surprised me as to how mechanically complex a sax was and it did make me wonder as to whether the mechanisms could be simplified.”
— Olaf Diegel
While attending Euromold 2013 in Frankfurt, Germany, last December with a band playing 3D-printed instruments, Olaf Diegel was set a challenge by the head of 3D Systems, Avi Reichental. The Professor of product development at Lund University, Sweden was given the task of creating a 3D-printed working saxophone. The first ODD prototype was revealed last week in a short demonstration video, which you can see here.
For the latest addition to the 3D-printed band, Diegel used a traditional alto sax as a design template to match the various key spacings and mechanisms. He worked in SolidWorks CAD software to produce the STL files needed for printing the nylon blower on a selective laser sintering (SLS) printer. The process took around 6 months due to a move from New Zealand to Sweden and other projects that demanded his attention, and the working prototype is made up of 41 components, not including springs and screws.
“This first one was printed from my own analysis of a sax, but based on measurements, and the mechanisms/linkages from a traditional sax,” he told Gizmag. “It really surprised me as to how mechanically complex a sax was and it did make me wonder as to whether the mechanisms could be simplified.”
Diegel has manually installed all of the metal springs for all of the keys for the current prototype, but says that the next iteration will include springs as a direct part of the keys, as well as integrating the pads in the keys (if he can get access to a multi-material printer).
“On a conventional sax most of the springs are just bits of spring wire that are hammered into the metal upstands of the sax, and then bent into shape to provide the right amount of tension to each key,” Diegel revealed. “But, when I try the same thing on a plastic upstand, there is not quite enough grip, so the springs rotate themselves into a position that doesn’t give the right spring tension for the key. That’s why I want to integrate the spring directly into the key…(read more)